Regional T1 relaxation time constants in Ex vivo human brain: Longitudinal effects of formalin exposure
نویسندگان
چکیده
PURPOSE Relaxation time constants are useful as markers of tissue properties. Imaging ex vivo tissue is done for research purposes; however, T1 relaxation time constants are altered by tissue fixation in a time-dependent manner. This study investigates regional changes in T1 relaxation time constants in ex vivo brain tissue over 6 months of fixation. METHODS Five ex vivo human brain hemispheres in 10% formalin were scanned over 6 months. Mean T1 relaxation time constants were measured in regions of interest (ROIs) representing gray matter (GM) and white matter (WM) regions and analyzed as a function of fixation time. RESULTS Cortical GM ROIs had longer T1 relaxation time constants than WM ROIs; the thalamus had T1 relaxation time constants similar to those of WM ROIs. T1 relaxation time constants showed rapid shortening within the first 6 weeks after fixation followed by a slower rate of decline. CONCLUSION Both GM and WM T1 relaxation time constants of fixed brain tissue show rapid decline within the first 6 weeks after autopsy and slow by 6 months. This information is useful for optimizing MR imaging acquisition parameters according to fixation time for ex vivo brain imaging studies. Magn Reson Med 77:774-778, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
منابع مشابه
Quantitative Ex Vivo MRI Changes due to Progressive Formalin Fixation in Whole Human Brain Specimens: Longitudinal Characterization of Diffusion, Relaxometry, and Myelin Water Fraction Measurements at 3T
Purpose Postmortem MRI can be used to reveal important pathologies and establish radiology-pathology correlations. However, quantitative MRI values are altered by tissue fixation. Therefore, the purpose of this study was to investigate time-dependent effects of formalin fixation on MRI relaxometry (T1 and T2), diffusion tensor imaging (fractional anisotropy, FA; and mean diffusivity, MD), and m...
متن کاملMagnetic resonance imaging and mathematical modeling of progressive formalin fixation of the human brain.
The temporal magnetic resonance (MR) appearance of human brain tissue during formalin fixation was measured and modeled using a diffusion mathematical model of formalin fixation. Coronal MR images of three human brains before formalin fixation and at multiple time points thereafter were acquired. T1 relaxation, T2 relaxation, water apparent diffusion coefficient (ADC), and proton density (PD) m...
متن کاملThe microstructural correlates of T1 in white matter.
PURPOSE Several studies have shown strong correlations between myelin content and T1 within the brain, and have even suggested that T1 can be used to estimate myelin content. However, other micro-anatomical features such as compartment size are known to affect longitudinal relaxation rates, similar to compartment size effects in porous media. METHODS T1 measurements were compared with measure...
متن کاملTarget-specific contrast agents for magnetic resonance microscopy
High-resolution ex vivo magnetic resonance (MR) imaging can be used to delineate prominent architectonic features in the human brain, but increased contrast is required to visualize more subtle distinctions. To aid MR sensitivity to cell density and myelination, we have begun the development of target-specific paramagnetic contrast agents. This work details the first application of luxol fast b...
متن کاملPathological Assessment of Brain White Matter in Relapsing-Remitting MS Patients using Quantitative Magnetization Transfer Imaging
Introduction: Multiple sclerosis (MS) is characterized by lesions in the white matter (WM) of the central nervous system. Magnetic resonance imaging is the most specific and sensitive method for diagnosis of multiple sclerosis. However, the ability of conventional MRI to show histopathologic heterogeneity of MS lesions is insufficient. Quantitative magnetization transfer imaging (qMTI) is a rel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 77 شماره
صفحات -
تاریخ انتشار 2017